

Agilent EEsof Application series Magnetic Resonances

3D EM Wireless Power Transfer of

Hiroaki Sasaki Agilent Technologies Japan, Ltd. **Electronic Measurement Group EDA Application Engineering**

Application Overview

Typical Situation

The contactless feed system of the electric power is studied and put to practical use. Many of these systems are based on the principle of electromagnetic induction. Therefore, there is a challenge to meet both transmission efficiency and transmission distance requirements. Recently, the method "Magnetic resonance" was proposed at MIT^[1] and was verified with a prototype. This highly effective method can achieve high power and long-distance transmission. To realize a practical design, knowledge of electric circuit logic and electromagnetic theory are required.

Potential Users and Targeted Markets

- Designer of Wireless power transfer (Contactless power transfer) related components or systems.
- All systems which need a power supply (Consumer electronics, Automobile, PC, Medical equipment, etc.)

3D EM Product contributions to the application

- EMPro GUI : Creating 3D components
- EMPro Simulation technologies : FEM and FDTD

Value Delivered

It is possible to define the model easily by entering shape information and material definitions in the 3D EM simulator. In addition, it is possible to simulate the optimum point with a parameter sweep function. Moreover, the evaluation in a realistic environment is possible by utilizing a circuit simulator (complete system evaluation can be executed).

Wireless Power Transfer System of Magnetic Resonance

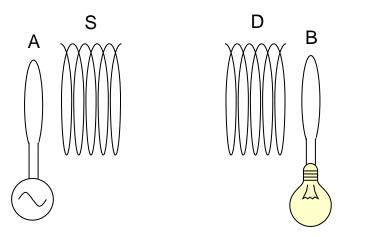


Fig. 1 Schematic of wireless power transfer system^[1]

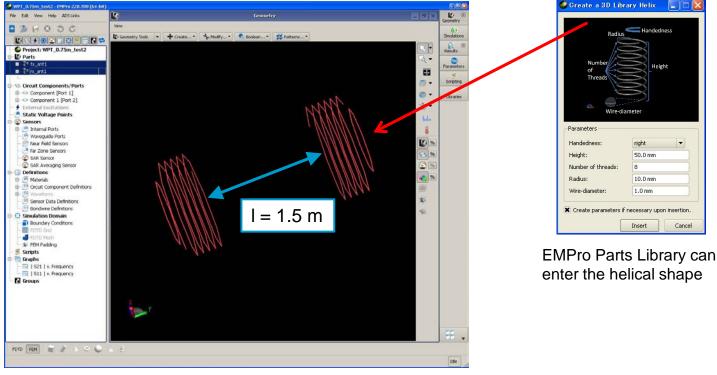
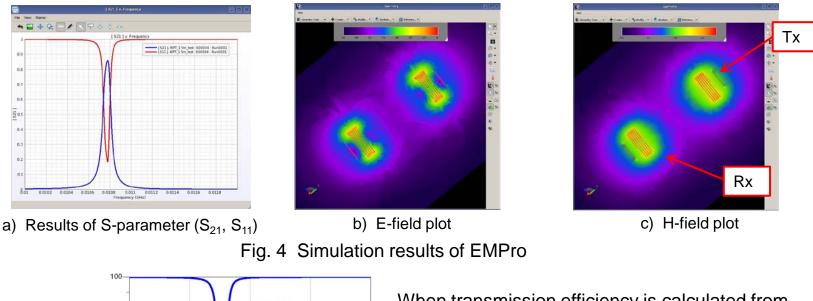
Figure 1 shows the wireless power transfer system proposed by the MIT team. A is a single copper loop of radius 25 cm that is part of the driving circuit. S and D are respectively the source and device coils with the same resonance frequency mutually. B is a single loop of wire attached to the load. The angle between coil D and the loop A is adjusted to ensure that their direct coupling is zero. Coils S and D are aligned coaxially.

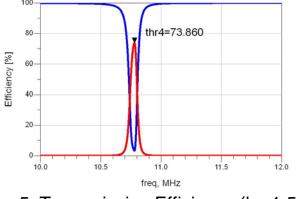
Fig. 2 Verification experiment model by MIT^[2] The transmitting efficiency was 40% (Helical coil distance was 2.1 m).

> Loop Coil (A, B) radius : r = 250 [mm] metal line diameter : a= 3.0 [mm] Helical Coil (S, D) coil length : a = 200 [mm] radius : r = 300 [mm] metal line diameter : a= 3.0 [mm] number of terns : n = 5.25 Material of line : Cupper

Magnetic resonance type wireless power transfer modeling by EMPro

To analyze the magnetic resonance method, a 3D model can be created in EMPro, a 3D EM simulator. Figure 3 shows a model generated in EMPro. The size such as the loop coils referred to the MIT model of Figure 2, and the distance between antennas was analyzed by 1.5m. For the simplification of a model, a coil is made into eight square shapes instead of a true circle, and also models the section of a lead in four square shapes.


Fig. 3 EMPro GUI

EMPro FEM Analysis

Figure 4 shows the simulation results by EMPro FEM. EMPro can analyze the spatial distribution of the E-field and H-field as well as S-parameters.

When transmission efficiency is calculated from Figure 4, **about 74%** transmission efficiency is calculated(Figure 5). This is almost corresponding to the theory of MIT of Figure 6.

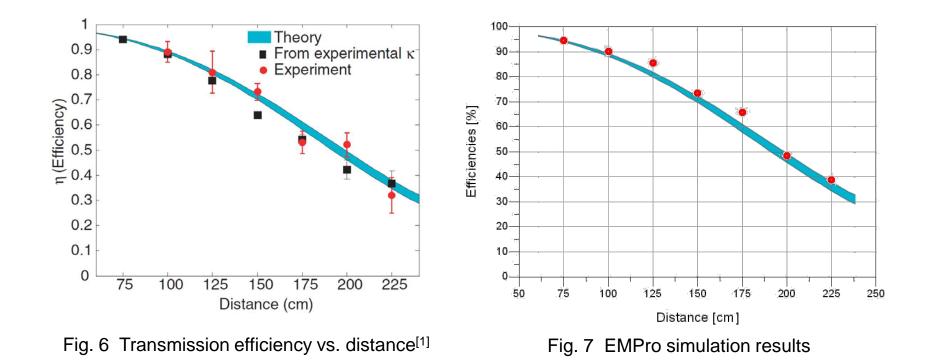

Power Transmission Efficiency : η_{21} $\eta_{21} = 100 \times |S_{21}|^2$ [%]

Fig. 5 Transmission Efficiency (I = 1.5 m)

Comparison between analysis and theory

The distance between transmitter and receiver coils in Figure 3 was parameterized, and a swept simulation was performed in EMPro. Figure 7 shows the simulation results. The result of analysis matched well with the theory and the experimental results from MIT of Figure 6.

Influence of Environment around model : Effect of Metal Plate

With the magnetic resonance method, there is less environmental influence compared with electromagnetic induction method. Influence by a large metal plate inserted between the helical coils was analyzed with EMPro. The distance between coils was 1 m, and a metal plate was located at the center.

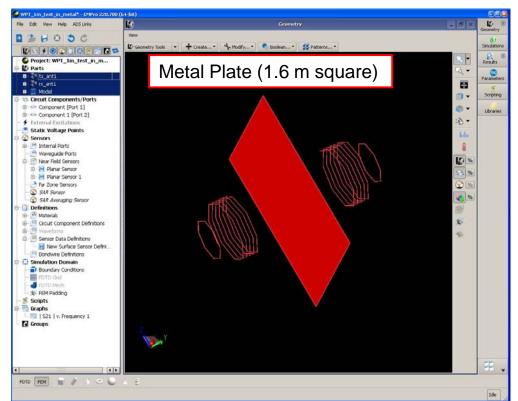


Fig. 8 Analysis of influence of metal plate (Distance between helical coils : I = 1 m)

Agilent Technologies

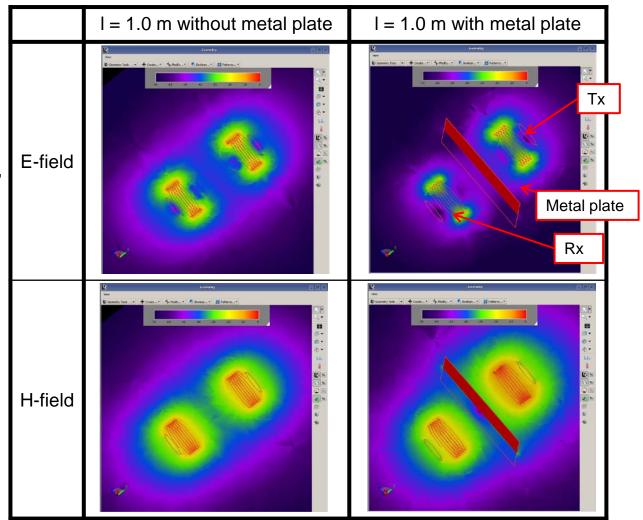
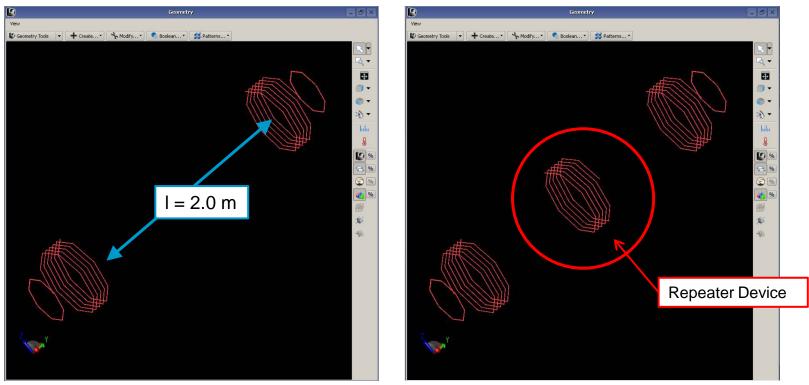

Influence of Environment around model : Effect of Metal Plate

Table 1 shows the simulation results. The transmitting efficiency becomes 57% with an inserted metal plate compared with 90% transmitting efficiency without the metal plate. Although transmission efficiency fell, it still exceeded 50%, which is difficult for other transfer system to realize.

Figure 9 shows the results of Efield and H-field. It confirms a resonant state even in the presence of a metal plate.

Table 1 Transmission Efficiency

Simulation model	Efficiency [%]
Without metal plate	90.1
With metal plate	56.7


Fig. 9 Results of electric and magnetic field

Agilent Technologies

Examination of transmission efficiency improvement

The method of inserting the "Repeater Device" is proposed to improve the transmitting efficiency. To confirm this, an additional coil, identical to the helical coil of S and D of Figure 1, was inserted between S and D as a repeater device, and analyzed with EMPro.

a) Without repeater device

b) With repeater device

Fig. 10 Analysis of repeater device (Distance between helical coils : I = 2 m)

Examination of transmission efficiency improvement

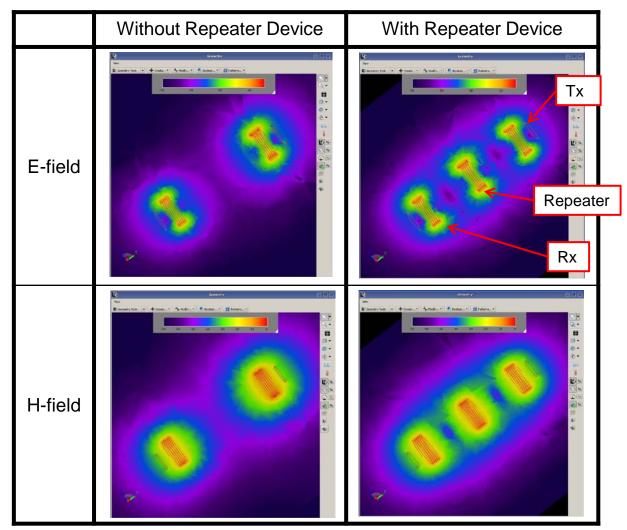
Table 2 shows the simulation results. The transmitting efficiency in a free space was 48.4% between antennas at the distance 2 m.

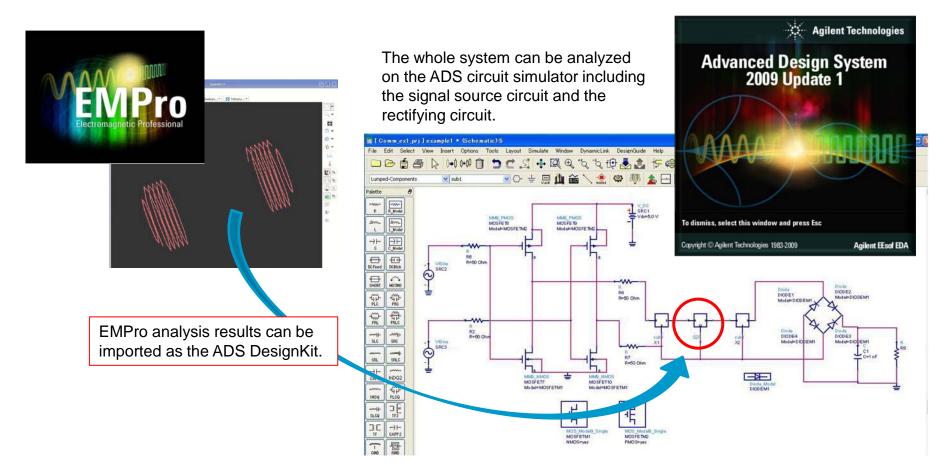
The efficiency improved to about 80% by inserting the repeater device.

Figure 11 shows the E-field and Hfield results. This confirms a resonant state in each helical coil when the repeater device is inserted.

Table 2	Transmission	Efficiency
---------	--------------	------------

Simulation model	Efficiency [%]
Without Repeater Device	48.4
With Repeater Device	80.1




Fig. 11 Results of electric and magnetic field

Agilent Technologies

Next Step ... Verification of transmitting efficiency in the whole system

After verifying electromagnetic models of wireless power transfer, the analysis of a complete system, including the transmission model and a circuit, would be desired. This can be accomplished with the combination of EMPro and the ADS circuit simulator.

Summary

- With a 3D EM simulator, the wireless power transfer method of magnetic resonance can be easily analyzed and modeled.
- The results of EMPro FEM analysis match well with the MIT theoretical results.
- In addition to the basic wireless power transfer model, EMPro can analyze behavior with additional elements, such as a metal plate, or a repeater.
- EMPro & ADS make it possible to verify performance of a complete system, including the designed wireless power transfer system. This is an ideal solution for optimizing each component for maximizing whole system performance.

References

- [1] A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. Soljačić : "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science, 317, pp. 83-86 (2007)
- [2] Supporting Online Material for [1]

www.agilent.com

www.agilent.com/find/eesof-empro

For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Contact Agilent at:

Americas

Canada(877) 894-4414Brazil(11) 4197 3500Mexico01800 5064 800United States(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
ndia	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Austria	01 36027 71571	
Belgium	32 (0) 2 404 93 40	
Denmark	45 70 13 1515	
Finland	358 (0) 10 855 2100	
France	0825 010 700*	
	*0.125 €/minute	
Germany	07031 464 6333	
Ireland	1890 924 204	
Israel	972-3-9288-504/544	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland	0800 80 53 53	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2010 Printed in USA, November 15, 2010 5990-6916EN

